

Full Utilization of Mobile LiDAR and AI on the City of Edmonton's Valley Line West LRT Expansion Project: Beyond an Alternative to Traditional Survey

Suliman Gargoum, PhD

suliman.gargoum@nektar3d.com

CONTENTS

BACKGROUND

- WEST LRT EXPANSION PROJECT
- MOTIVATION AND OBJECTIVES

EFFICIENT DATA COLLECTION

- TIGHT SCHEDULE
- INNOVATIVE APPROACH

DATA PROCESSING

- AI BASED CLEANING AND CLASSIFICATION
- 3D CAD MODELS OF EXISTING CONDITIONS

DIGITAL TWIN CONSTRUCTION EARLY WORKS

- VIRTUAL SITE VISITS
- VIRTUAL TREE SURVEY
- BOREHOLE CONFLICT ASSESSMENT

CONCLUSIONS AND RECOMMENDATIONS

EDMONTON VALLEY LINE WEST LRT EXPANSION

- The Edmonton Valley Line West LRT Expansion project is the second stage of building an urban-style 27 km rail line.
- The line extends between Downtown Edmonton and Lewis Farms (West Edmonton).
- In October 2020, the City selected Marigold Infrastructure Partners as the preferred proponent for the **\$2.61 billion project**.

Source: https://www.railwayage.com/passenger/edmonton-advances-c2-6b-valley-line-west-Irt-extension/

MOTIVATION AND OBJECTIVES

- This presentation demonstrates how <u>Mobile LiDAR, AI</u>, and <u>Cloud-Based</u> <u>Data Management</u> resources were used to support the following project activities:
 - Design
 - Construction planning
 - Early works

EFFICIENT DATA COLLECTION USING MOBILE LIDAR TECHNOLOGY

MOBILE LIDAR TECHNOLOGY

- LiDAR (Light Detection And Ranging) is an optical remote sensing technology which uses near-infrared light rays to collect exact position and intensity information about objects.
- In Mobile Laser Scanning, a data collection truck is mounted with a laser scanning system.
 - The truck captures 360⁰ representation of the road environment while travelling at the road's speed limit.

MOBILE LIDAR POINT CLOUD

- The Project got awarded on the 23rd
- Heavy Snowfall took place on the 29th
- The Project team had 5 days (3 working days) to complete field work:
 - Obtain approval from the CoE
 - Carryout all safety checks
 - Layout 850 ground control points
 - Captured 3D data along the entire 28km corridor (multi-pass).

Octob	oer 202	~	~			
Мо	Tu	We	Th	Fr	Sa	Su
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	×.

Project Award Date

Heavy Snowfall Forecasted

- The corridor was too busy to lay out Ground Control Points (GCP) during the day, thus **only 4 nights** were available to complete the work
- The 850 GCP were laid out at intersections, tie-in locations, and midblock every 100-200m
 - GCP were split into 25% validation, 75% registration

- After laying out the control data, the LiDAR scan was conducted.
- Data was collected using Nektar 3D's Dual-Sensor Leica Pegasus: Two Ultimate Laser Scanning System.
 - Unlike other sensors the unit provides extremely high-resolution data with a mm-level accuracy. This is critical when the data is to be used for design.
 - The dual sensor system minimizes shadowing and helps capture full site details.

- Multiple passes of the corridor were conducted to capture full right of way extents.
- The scan was also conducted at night to avoid high traffic during the day.
- To obtain a colourized scan, high power LED floodlight were mounted onto the truck.
 - Although useful in colourizing the scans, the intensity readings in the data were biased, which had some impacts on the AI classification.

GEOREFERENCING AND **S**CAN **R**EGISTRATION

- After collecting the data, the scan files were processed and tied down using the ground control points.
 - The points were surveyed using the total station equipment.
- This resulted in an accurate scan of the entire project corridor.
- To assess accuracy, it is recommended that a subset of the GCP are NOT used in tie down and are kept for validation.

AUTOMATED DATA PROCESSING USING AI AND ML

DATA CLEANING AND CLASSIFICATION

- After tying down the scans, the data was then segmented using AI algorithms.
 - The algorithms use a deep neural network to classify every point within the point cloud into a specific type of object.
 - This helps remove unwanted points (eg: cars, construction equipment, noise...etc) from the point cloud

How the AI brain operates

VIRTUAL TREE INVENTORY

3D CAD-BASED DOCUMENTATION OF EXISTING CONDITIONS

EXISTING DESIGN DOCUMENTATION

- The data was then used to generate a full as-built of existing conditions
- The consist of 3D CAD Models of existing conditions including
 - Curb details
 - Sidwalks, Ramps
 - Lip of gutter
 - Building line

EXISTING DESIGN DOCUMENTATION

DIGITAL TWINNING AND CLOUD-BASED DATA MANAGEMENT

DIGITALIZED REGIONS IN CLIENT DASHBOARD

• Full Project Digitalization (2D and 3D)

DIGITALIZED REGIONS IN CLIENT DASHBOARD

- All scan files and CAD design files were linked to 2D polylines in a Cloud-Based GIS Platform.
- This facilitated ease of access to different sections of the project corridor.
- Many activities that would typically require conducting a physical site visits were conducted **virtually**.

- Point Cloud Viewer - Google Chrome

nektar3d.com/?point_cloud_id=8120009_Area5(MeadowlarkRd_91AveTo90Ave)&point_color_type=RG8&import_linework=1&latitude=53.52546062479469&longitude=-113.59030169975361&altitude=672.582641601

3D view

2D view

Virtual Measurements of Road Dimensions

Virtual Assessment of Clearances

Virtual Extraction and Assessment of Profiles and Cross Sections

EARLY WORKS

EARLY WORKS (TREE CONFLICT ASSESSMENT)

- The tree data extracted from the LiDAR point cloud and the field survey was used to assess conflicts between existing trees and proposed design
- A fully automated script was written to automatically perform the assessment.

EARLY WORKS (TREE CONFLICT ASSESSMENT)

- The algorithm measures distance from all trees to the design lines and flags trees within a specific distance threshold
- The following figure shows an example of a tree in conflict with proposed rail tracks.

EARLY WORKS (BOREHOLE PLANNING)

- The point cloud was also used to map and visualize borehole drilling locations
 - This helped identify potential conflicts
- Drilling boreholes was required to check the ground conditions, which helps project participants with detailed design.

B	:	C	Ø		1		Ð	Ξ	+	Salt	ø	Ē	₽	m -	0	- 1	0	0	* -	۰ نې			
Dra	gac	olüm	n heade	r here	to gro	up by	/ that	colum	ñ														
		Ass	et Num		0	0	14-	1	Folder	*		Name	1	Lat		Long		D	Status	*	Locates	1	Locate Date
				T	Y					٦	T			f	T		Ŧ	T		T		T	~
+		126	051592	80	13	0	3t.	1	Geotec	Inves	т	BH-T-2	23 (11.5	. 53.54	19	-113.	57						
÷		720	891537	43		0	类	1	Historic	al Bore	A	BH143	89-84	53.52	223	-113.	65						
+		774	649086	53		0	奥	1	Geotec	Inves	E	BH-EG	-43 (42	. 53.51	95	-113.	60	Pie					
¥		786	509827	69	121	0	÷	1	Geotec	Inves	S	BH-SP	R-06 (2	53.54	77	-113.	54	w					
+		719	835047	96	0	0	歩	1	Historic	al Bore	A	BH143	89-82	53.52	24	-113.	65						
*		452	536608	71	10	0	*	1	Historic	al Bore	A	TH18-	1	53.52	18	-113.	66,						
+		998	331269	27		0	皮	1	Geotec	Inves	A	BH-AH	D-05 (3	. 53.52	27	-113.	66	w					
¥		812	519165	63		0	÷	1	Geotec	Inves	S	BH-S-0	03 (15 m)	53.53	809	-113.	59 .	15					
+		498	284279	74		0	歩	1	Historic	al Bore	G	TH12-3	332	53.48	860	-113.	43						
¥		752	697583	09	101	0	1	1	Geotec	Inves	E	BH-EG	-12 (35	. 53.52	211	-113.	62	Pie					
+		586	273371	45		0	奥	1	Geotec	Inves	T	BH-T-2	27 (11.5	. 53.54	12	-113.	58						
¥		118	081842	68	12	0	÷.	1	Geotec	Inves	L	CPT-LF	-02 (30	. 53.52	28	-113.	66	LF					
+		775	994815	37	13	0	歩	1	Geotec	Inves	S	BH-SP	R-02 (3	53.54	75	-113.	54	Sto					
¥		849	245178	62	10	0	2	1	Geotec	Inves	S	BH-S-1	15 (15 m)	53.54	62	-113.	51	10					
+		236	196737	82	0	0	凑	1	Geotec	Inves	E	BH-EG	-06 (41	. 53.52	14	-113.	63	Pie					
¥		852	632226	15	囱	0	÷.	1	Geotec	Inves	S	BH-S-1	13 (15 m)	53.54	62	-113.	52	11					
+		740	321564	00	13	0	皮	1	Geotec	Inves	E	BH-EG	-21 (42	. 53.52	206	-113.	62	Pie					

List of Borehole Locations Imported into

the GIS Platform

EARLY WORKS (BOREHOLE PLANNING)

Planning Borehole Drilling in the 3D point cloud

Other Work

- Construction Quantity Estimates
 - Using a combination of mobile LiDAR and RTK Drone Technology, the Project team could efficiently assess construction quantities.
- Line of Sight Assessments
 - Assessing sight distance along the corridor is also possible in the 3D point cloud.
- Clearance Assessments
 - Assessing conflicts between LRT vehicles and existing overhead assets.

CONCLUSIONS & FUTURE WORK

- This presentation demonstrates how mobile LiDAR scans can be fully utilized beyond being a simple replacement to traditional survey
- Machine learning, AI, geospatial analytics were employed to help in:
 - **Cleaning and processing** the point clouds.
 - Documenting 3rd Party Assets
 - Producing **3D CAD models** of existing conditions for **design**.
 - Facilitating **virtual site visits** in a cloud-based platform.
 - Supporting the projects **early works** including tree inventory and tree conflict assessment and borehole mapping.
- Besides improving the efficiency of project activities, the technology also provided the project team with more details about the project.

ACKNOWLEDGEMENTS

CANADA

Questions ?

CONTACT: Dr. Suliman Gargoum

Cofounder and Advisor, Nektar 3D Consulting, Edmonton, Alberta, Canada Tel: 780-200-0161 Office: 780-221-6159 suliman.gargoum@nektar3d.com

www.nektar3d.com